AmbientDB: Relational Query Processing in a
P2P Network

Peter Boncz and Caspar Treijtel

CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands
{P.Boncz,C.Treijtel}@cwi.nl

Abstract. A new generation of applications running on a network of
nodes, that share data on an ad-hoc basis, will benefit from data man-
agement services including powerful querying facilities. In this paper, we
introduce the goals, assumptions and architecture of AmbientDB, a new
peer-to-peer (P2P) DBMS prototype developed at CWI. Our focus is
on the query processing facilities of AmbientDB, that are based on a
tree-level translation of a global query algebra into multi-wave stream
processing plans, distributed over an ad-hoc P2P network. We illustrate
the usefulness of our system by outlining how it eases construction of
a music player that generates intelligent playlists with collaborative fil-
tering over distributed music logs. Finally, we show how the use of a
Distributed Hash Tables (DHT) at the basis of AmbientDB allows ap-
plications like the P2P music player to scale to large amounts of nodes.

1 Introduction

Ambient Intelligence (AmlI) refers to digital environments in which multimedia
services are sensitive to people’s needs, personalized to their requirements, an-
ticipatory of their behavior and responsive to their presence. The AmlI vision
is being promoted by the MIT Oxygen initiative [14] and is becoming the fo-
cal point of much academic and commercial research. The AmbientDB project
at CWI is performed in association with Philips, where the target is to address
data management needs of ambient intelligent consumer electronics. In prototyp-
ing AmbientDB, CWI builds on its experience with DBMS kernel construction
obtained in PRISMA [25] and Monet [4].

Figure 1 illustrates an example scenario, where a hypothetical ambient-
intelligence enriched “amP2P” audio player automatically generates good playlists,
fitting the tastes, probable interests and moods of the listeners present to the
available music content. The amP2P player uses a local AmbientDB P2P DBMS
to manage its music collection as well as the associated meta-information (among
others how and when the music was played and appreciated).

We believe there is a common set of data management needs of AmlI appli-
cations, and in the AmbientDB project we investigate new directions in DBMS
architecture to address these.

In the case of the amP2P player in Figure 1, the main idea is to exploit
the wealth of knowledge about music preferences contained in the playlist logs

networked senﬂgsl_ " PN <) create distributed table AMP2P.USER (
ﬂ@s:']:: res'sgure . USERID varchar, PROFILE text)
I = primary key (USERID);

"amP2P" player
rtbeat =

IS e tpace
"generate a playlist of the . pevice
available content that fits
the likes and moods of
all current listeners"

create distributed table AMP2P.SONG (
SONGID varchar, NAME varchar,
ARTIST varchar, ALBUM varchar,
LENGTH integer, FILENAME varchar)
primary key (SONGID);

create partitioned table AMP2P.LOG (
LOGID integer, SONGID varchar,
£ USERID varchar, START daytime,
i eneass peersN| DURATION integer)
(semi-structured) meta-information g 55 many more logs at primary key (LOGID);

networked amP2P playe

Fig. 1. Music Playlist Scenario Fig. 2. Example Music Schema

of the thousands of online amP2P users, united in a global P2P network of
AmbientDB instances. The amP2P player could also use AmbientDB to regularly
query home sensors, such as active spaces that tell who is listening (in order to
select music based on recorded preferences of these persons), and even use speech,
gesticulation or mood detectors, to obtain feedback on the appreciation of the
currently playing music. Additionally, it could use AmbientDB to query outside
information sources on the internet to display additional artist information and
links while music is playing, or even to incorporate tracks that can be acquired
and streamed in from commercial music sites.

We define the goal for AmbientDB to provide full relational database func-
tionality for standalone operation in autonomous devices, that may be mobile
and disconnected for long periods of time. However, we want to enable such de-
vices to cooperate in an ad-hoc way with (many) other AmbientDB devices when
these are reachable. This justifies our choice for P2P, as opposed to designs that
suppose a central server. We restate our motivation that by providing a coherent
toolbox of data management functionalities (e.g. a declarative query language
powered by an optimizer and indexing support) we hope to make it easier to
create adaptive data-intensive distributed applications, such as sketched in the
ambient-intelligent domain.

1.1 Assumptions

upscaling: We assume the amount of cooperating devices to be potentially
large (e.g. in agricultural sensor networks, or our example of on-line amP2P
music players). Flexibility is our goal here, as we also want to use Ambi-
entDB in home environments and even as a stand-alone data management
solution. Also, we want to be able to cope with ad-hoc P2P connections,
where AmbientDB nodes that never met before can still cooperate.

downscaling: AmbientDB needs to take into account that (mobile) devices
often have few resources in terms of CPU, memory, network and battery
(devices range from the PC down to smart cards [3] or temperature sensors).

schema integration: While we recognize that different devices manage differ-
ent semantics which implies a need for heterogeneous schema re-mapping

support (a.k.a. “ model management” [7,18]), in this paper we assume a

situation where all devices operate under a common global schema. As the
functionality of the AmbientDB schema integration component evolves, the
schema operated on by the query processor will increasingly become a virtual
schema that may differ widely from the local schema stored at each node.

data placement: We assume the user to be in final control of data placement
and replication. This assumption is made because in small mobile devices,
users will want to have the final word on how scarce (storage) resources
are used. This is a a main distinction with other work on distributed data
structures such as DHTs [22,8] and SDDS [16], where data placement is
determined solely by the system.

network failure: P2P networks can be quite dynamic in structure, and any
serious internet-scale P2P system must be highly resilient to node failures.
AmbientDB inherits the resilience characteristics of Chord [8] for keeping
the network connected over long periods of time. When executing a query,
it uses the Chord finger table to construct on-the-fly a routing tree for query
execution purposes. Such a routing tree only contains those nodes that par-
ticipate in one user query and thus tends to be limited in size and lifetime.
Our assumption is that while a query runs, the routing tree stays intact (a
node failure thus leads to query failure, but the system stays intact and the
query could be retried).

Since our work touches upon many sub-fields of database research[15,11], we
highlight the main differences. Distributed database technology works under the
assumption that the collection of participating sites and communication topol-
ogy is known a priori. This is not the case in AmbientDB. Federated database
technology is the current approach to heterogeneous schema integration, but is
geared towards wrapping and integrating statically configured combinations of
databases. In mobile database technology, one generally assumes that the mobile
node is the (weaker) client, that at times synchronizes with some heavy cen-
tralized database server over a narrow channel. Again, this assumption does not
hold here. Finally, P2P file sharing systems [19, 23] do support non-centralized
and ad-hoc topologies. However, the provided functionality does not go beyond
simple keyword text search (as opposed to structured DB queries).

RELEVANT := select L.USERID, COUNT(*) as WEIGHT

from AMP2P.LOG L, AMP2P.SONG S USERIDWEIGHT
where L.SONGID = ‘‘<normalized song name>’’ and N Ei:g ?,g
L.SONGID = S.SONGID and
L.DURATION >= S.LENGTH wid2 By
group by USERID
VOTE := select H.SONGID, SUM(H.TIMESPLAYED * R.WEIGHT) AS VOTE
from AMP2P.HISTO H, RELEVANT R 5051:1?411:) V4089'1'2E
where H.USERID = R.USERID N sid9 3472
groupby H.SONGID
order by VOTE descending si.d-87 3.4.2

limit 100

Fig. 3. Collaborative Filtering Query in SQL

1.2 Example: Collaborative Filtering in a P2P Database

In our example scenario, the intelligent “amP2P” player has access to a local
content repository that consists of the digital music collection of the family (e.g.
in mp3 and WMA formats). This collection — typically in the order of a few
thousands of songs — is distributed among a handful of electronic devices owned
by family members (PC, PDAs, mobile phones, mp3 players). These devices may
have (mobile) access to the internet. The amP2P application would be based on
an instance of AmbientDB running in each of these devices. The devices running
AmbientDB form a self-organizing P2P network connecting the nodes for sharing
all music content in the “home zone” , and a possibly huge P2P network consisting
of all amP2P devices reachable via the internet, among which only the meta-
information is shared. To give an idea of the potential scale: the currently most
popular music-oriented P2P file-sharing systems have 3 million nodes connected,
which share 800 million songs (of which 1 million may be unique).

Figure 2 shows the schema created by the amP2P application consisting of
three tables (USER, SONG, and L0G), that all appear in the global schema “AMP2P”
in AmbientDB. Using these structures, the amP2P application registers which
users are active on each device, and what music they play. These are distributed
tables, which means that seen on the global level (over all devices connected in
an AmbientDB network) it is formed by the union of all (overlapping) horizontal
fragments of these tables stored on each device.

Our approach can be compared to a memory-based implicit voting scheme [6].
The vote v; ; corresponds to the vote of user ¢ on item j. The predicted vote
for the active user for item j is defined as p, ; = Uy + £ Y 5y w(a,)(vi,; — U;),
where w(a,) is a “weight” function, ; is the average vote for user 7 and & is a
normalizing factor. We consider fully playing a song as a “vote” in this scenario,
For approximating the weight function between the active user and another user,
the active user chooses an example song as an input for the query. We define
our weight function weight(user,,user;) to be the times the example song has
been fully played by user i. Figure 3 shows how this is expressed in AmbientDB:
first we compute the listen count corresponding to the example song for all users
in a temporary table, then we join this temporary table again with the log to
compute the weighted vote for all songs, and take the highest 100 songs.

1.3 Overview

In Section 2, we describe the general architecture of AmbientDB. In Section 2.2
we focus on query execution in AmbientDB, outlining its three-level query exe-
cution process, where global abstract queries are instantiated as global concrete
queries (and rewritten) before being executed as (multi-) “wave” dataflow op-
erator plans over a P2P routing tree. In Section 3 we describe how Distributed
Hash Tables (DHTS) fit in AmbientDB as database indices on global tables, and
show how these can optimize the queries needed by the amP2P music player.
After outlining some of the many open challenges and discussing related work,
we conclude in Section 4.

2 AmbientDB Architecture

In the following, we describe the major architectural components of AmbientDB.
The Distributed Query Processor gives applications the ability to execute queries
on (a subset of) all ad-hoc connected devices as if it was a query to a central
database on the union of all tables held on all selected devices. This is the focus
of our paper.

The P2P Protocol of AmbientDB JE——
uses Chord [8] to connect all nodes

for implementing global table indices

as Distributed Hash Tables (DHTs). Local || XML schemal | P2P network
Chord was selected as it provides an integration
elegant, simple yet powerful DHT, with

an open-source implementation as well ——— other AmbientDB instances

as simulator available. At its core, Chord ROBMS

is a scalable lookup and routing scheme
for possibly huge and P2P IP overlay networks made out of unreliable connec-
tions. On top of that, the AmbientDB P2P protocol adds functionality for cre-
ating temporary (logical) routing trees These routing trees, that are used for
routing query streams, are subgraphs of the Chord network. When processing a
query, we consider the node that issues the query as root.

The Local DB component of AmbientDB node may store its own local tables,
either internally in an embedded database, or in some external data source (e.g.
RDBMS). In that case, the local DB component acts as a “wrapper” component,
commonly used in distributed database systems [15]. The Local DB may or
may not implement update and transaction support and its implemented query
interface may be as simple as just a sequential scan. However, if more query
algebra primitives are supported, this provides query optimization opportunities.

The Schema Integration Engine allows AmbientDB nodes to cooperate under
a shared global schema even if they store data in different schemas, by using
view-based schema mappings [7]. An often forgotten dimension here is providing
support for schema evolution within one schema, such that e.g. old devices can
be made to work with newer ones. Note that AmbientDB itself does not attack
the problem of constructing mappings automatically, but aims at providing the
basic functionality for applying, stacking, sharing, evolving and propagating such
mappings [18].

Local DB is a wrapper around any (external) data store.

2.1 Data Model

AmbientDB provides a standard relational data model and a standard relational
algebra as query language (thus it will be easily possible to e.g. create an SQL
front-end). The queries that a user poses are formulated against global tables. The
data in such tables may be stored in many nodes connected in the AmbientDB
P2P network. A query may be answered only on the local node, or using data
from a limited set of nodes or even against all reachable nodes.

Figure 4 shows that, a global table can be either an Local Table (LT), Distributed
Table (DT) or Partitioned Table (PT). Each node has a private schema, in which
Local Tables (LT) can be defined. Besides that, AmbientDB supports global
schemata that contain global tables 7', of which all participating nodes N; in
the P2P network carry a table instance T;. Each local instance T; may also be
accessed as a LT in the query node. The Distributed Table (DT) is defined over a
set of nodes () that participate in some global query, as the union of local table
instances at all nodes Ty = union(T}) Vi € (). As we support ad-hoc cooperation
of AmbientDB devices that never met before, tuples may be replicated at various
nodes without the system knowing this beforehand. The Partitioned Table (PT)
is a specialization of the distributed table, where all participating tuples in each
T; are disjunct between all nodes. One can consider a PT a consistent snapshot
view of the abstract table. A Partitioned Table has the advantage over a DT that
exact query answers can often be computed in an efficient distributed fashion,
by broadcasting a query and letting each node compute a local result without
need for communication. Whether a tuple participates in a partitioned table,
is efficiently implemented by attaching a bitmap index (i.e. a boolean column)
T;.Q to each local table T; (see Figure 4). This requires little storage overhead,
since adding one extra 64-bit integer column to each tuple suffices to support 64
partitioning schemes. Such partitioning schemes are typically only kept for the
duration of a query, such that typically no more than a handful will coexist.

In AmbientDB, data placement is explicit, and we think that users sometimes
need to be aware in which node tuples — stored in a DT /PT — are located. Thus,
each tuple has a “virtual” column called #NODEID which resolves to the node-
identifier (a special built-in AmbientDB type) where the tuple is located. This
allows users to introduce location-specific query restrictions (return tuples only
from the same node where some other tuples where found), or query tuples only
from an explicit set of nodes.

2.2 Query Execution in AmbientDB

Query execution in AmbientDB is performed by a three level translation, that
goes from the abstract to the concrete and then the execution level. A user
query is posed in the “abstract global algebra,” which is shown in Table 1. This
is an standard relational algebra, providing the operators for selection, join,
aggregation and sort. These operators manipulate standard relational tables,
and take parameters that may be (lists of) functional expressions. Lists are
denoted (List<Type>), list instances <a,b,c>.

Any Table mentioned in the leaves of an abstract query graph, resolves to
either a LT, DT, or PT (Figure 4). Thus, when we instantiate the parameters
of an abstract relational operators, we get a concrete operator invocation. Ta-
ble 2 shows the concrete operators supported in AmbientDB, where for reasons
of presentation, each operator signature is simplified to consist only of the Table
parameters and return type. The signatures are shown for all concrete instan-
tiations of the previously defined abstract operators plus two extra operators
(partition and union), which are not present on the abstract level.

Starting at the leaves, an abstract query plan is made concrete by instan-
tiating the abstract table types to concrete types. The concrete operators then
obtained have concrete result types, and so the process continues to the root of
the query graph, which is (usually) required to yield a local result table, hence
a LT. Not all combinations of parameter instantiations in abstract operators are
directly supported as concrete operators by AmbientDB, thus the AmbientDB
query processor must use rewrite-rules to transform an abstract plan into a valid
concrete query plan. AmbientDB does support the purely local concrete variant
of all abstract operators, where all Tables instantiate to LTs. In combination
with the concrete union, which collects all tuples in a DT or PT in the query
node into a LT, we see that any abstract plan can trivially be translated into
a supported query plan: substitute each DT or PT by a unionmerge (DT), that
creates an LT that contains all tuples in the DT. This rewriting should be part
of the rewriting done by a query optimizer that looks for an efficient plan.

Each concrete signature roughly corresponds with a particular query execu-
tion strategy. Apart from the purely local execution variants, the unary operators
select, aggr and order support distributed execution (dist), where the operation
is executed in all nodes on their local partition (LT) of a PT or DT, produc-
ing again a distributed result (PT or DT). On the execution level, this means
that the distributed strategy broadcasts the query through the routing tree, af-
ter which each node in the tree executes the LT version of the operator on its
fragment of the DT. Thus, in distributed execution, the result is again dispersed
over all nodes as a PT or DT.

The dist aggregate hence produces distributed sub-results that only aggre-
gate over a local partition of a DT or PT. The aggrmerge variant is equivalent
t0 aggTioca: (unionmerge (DT)) :LT, but is provided separately, because aggregating
sub-results in the nodes (“in network processing”) reduces the fragments to be
collected in the query node and can save considerable bandwidth [17].

Apart from the purely local join, there are three join variants. The first
is the broadcast join, a LT at the query node is joined against a DT/PT, by

Local Tables (LT) Tx

abstract global algebra
Select(Table t; Expr cond; List<Expr> result) —Table
Aggr(Table t; List<Expr> groupby, result)—Table
Join(Table left,right;Expr cond;List<Expr> result)—Table
Order(Table t; List<Expr> orderby, result) —Table
TopN(Table t; List<Expr> orderby, result; int limit)—Table

data model
Column(String name; int type)
Key(bool unique; List<Column> columns; Table table)
Table(String nme;List<Column> cols;List<Key> prim,forgn)

expressions

Expr(int type)
Expr: :ConstExpr(String printedValue)
partition bitmap indices Tx.q Expr: :ColumnExpr(String columnName)
Partitioned Table (PT) Tq Expr: :OperatorExpr (String opName, List<Expr>)

Fig.4. LT, DT & PT Table 1. The Abstract Global Algebra

Concrete Global Algebra =

(T1 , Ts € {DT, PT}) select ool
Union(T; t; List<Expr> key, result) —LT # merge DI/PT into a LT | 299 .ooor
Partition(DT t; List<Expr> key) —PT # identifies duplicates order n-or E @
selectyyeqi (LT) —LT joinjoeqi (LT,LT) —LT aggriocql (LT) LT
selectyiss (T1) =T joingroadcast (LT, T1) =Ty aggrmerge (T1) —LT
select.porqg (DHT) —LT joinsp“t (LT1,T1)—Ty aggrdist (T1)—DT
orderj,cqi (LT) —LT joinforeignkey (T1,DT) —=T1 | unionmerge (T1) —LT
orderg;s: (T1)—T1 topnjycql (LT) —LT unionggim (T1) —LT

Table 2. The Concrete Global Algebra

oin
[] Local Dataflow Algebra | {J proadeast
n|scan (Buffer b) —»Dataflow Legenda
s|select (Dataflow d; Expr cond; List<Expr> result) —Dataflow B‘éﬁﬁe
alaggr(Dataflow d; List<Expr> groupBy,aggr) —Dataflow -
olorder(Dataflow d; List<Expr> orderby,result) —Buffer connection
n|topn(Dataflow d; List<Expr> orderby,result, int n) —Buffer slhread
jljoin(Dataflow d;, d,; List<Expr> key;,key,,result) very
merge-join on dataflows ordered on key flood
mlmerge (Dataflow d;,d,; List<Expr> key) —Dataflow ®|[;chamr
merges key-ordered dataflows, returning tuples in order bszer
adds {.#cnt: number of consecutive tuples with equal key ocal
and t.#nr: which ascends 0,1, etc.. in each such chunk table

ot

split (Dataflow d; List<Buffer>< bi..b,>; o
List<Expr>< fi..fn>) —Dataflow {JU'",‘,,E‘glnkey
returns equal stream, inserts tVi: f; (t) = true in b;

Table 3. The Dataflow Algebra Fig. 5. Mappings

broadcasting the LT, and joining it in each node with its local table. Secondly,
the foreignkey join exploits referential integrity to minimize communication. In
AmbientDB, each node is in principle autonomous, which implies that viewed
locally, its database should be consistent (have referential integrity). Therefore,
join of a local table into a PT or DT over a foreign key, will be able to find all
matching tuples locally. Thus, the operator can just broadcast the query and
execute such joins locally (much like the dist strategy). The third variant is the
split join (between an LT and DT), where the join predicate contains a restriction
on #NODEID (thus specifying exactly on which node a tuple should be located). In
this case, the LT relation is not broadcasted through the spanning tree, rather
it is split when forwarded at each node in a local part (for those tuples where
the #NODEID resolves to the local node) and in a part for each child in the routing
tree. This reduces bandwidth consumed from O(T * N) to O(T xlog(N)) (where
T is the amount of tuples in the DT and N is the number of nodes).

The partition is a special operator that performs double elimination: it cre-
ates a PT from a DT by creating a tuple participation bitmap at all nodes. Such
an index records whether that tuple in a DT participates in the newly defined
PT, at the cost of 1 bit per tuple. Recall that in AmbientDB, we support ad-hoc
querying over nodes that meet for the first time and do not know what is repli-
cated where. In order to be able to use the dist operators, we should convert a
DT to a PT. Implementation details for partition can be found in [5].

2.3 Dataflow Execution

AmbientDB uses dataflow execution [25] as its query processing paradigm, where
a routing tree that connects all nodes through TCP/IP connections is used to
pass bi-directional tuple streams. Each node may receive tuples from its parent,
process them with regards to local data, and propagate (broadcast) data to its
children. Also, the other way around, it may be receiving data from its chil-
dren, merging them (using some operators) with each other as well as with local
data and pass the resulting tuples back to the parent. When an AmbientDB
query runs, it may cause multiple simultaneous such waves, both upward and
downward.

The third translation phase for query execution in AmbientDB consists of
translating the concrete query plan into wave-plans, where each individual con-
crete operator maps onto one or more waves. Each wave, in turn consists of a
graph of local dataflow algebra operators (this dataflow algebra is shown in Ta-
ble 3). For brevity, in the plans we denote each dataflow operator by a single
letter, and we use an arrow going out of a buffer to denote an implicit scan op-
erator. Dataflow operators may read multiple tuple streams but always produce
just one output stream, such that each wave-plan can be executed by one sepa-
rate thread, that calls to the root an object graph of nested iterators, where each
iterator corresponds with a dataflow algebra operator (i.e. the Volcano iterator
model [10]). The leaves of the dataflow query graphs either scan a LT, or read
tuples from a neighbor node in the routing tree via a communication buffer (we
consider a LT also a buffer). Queries that consist of multiple waves pass data
from one to the other using buffers that are shared between multiple waves (typ-
ically holding DT/PT fragments produced by a concrete operator that serves as
input for the next).

In Figure 5, we show the mapping on wave plans for some concrete alge-
bra operators. These operators typically broadcast their own query request first
(depicted by a hexagon). The dist plans for select, aggr, order (top), and the
foreign-key join (bottom) execute a buffer-to-buffer local operator in each node,
without further communication. The broadcast join (middle), however, produces
a tuple stream through the network. It splits the incoming stream containing the
broadcasted LT to all its children, before executing the local join with its local
partition, producing a result buffer in each node.

The dataflow algebra operators shown in Table 3 use as algorithms resp.
scan-select, quick-sort, merge-join, heap-based top-N and ordered aggregation,
which are all stream-based and require little memory (at least no more than
the memory used to hold the LTs present). These algorithms were chosen to
allow the AmbientDB to run queries even on devices with little computational
resources.

2.4 Executing The Collaborative Filtering Query

Now we show an example of query execution in AmbientDB using the collab-
orative filtering query from Figure 3. Its translation into two concrete algebra
queries is shown in Figure 6.

The RELEVANT query, that computes the relevance of each user, starts with
a distributed select on the example song in the L0G DT. As also illustrated in
Figure 8 the query is broadcast, and then in each node that stored the Log DT,
a selection is executed. This local result is streamed into a foreign-key join to
the local soNG DT partition, in order to filter out those log records where the
song was not played fully. Those result table fragments are then materialized
in the ordergis: on USERID, which is required later for ordered aggregation. The
aggregated values then start to stream back to the query node, passing through
a aggrmerge i €ach node that sums all partial results.

LT RELEVANT :=
aggrmerge (DT T4 :
aggrqis¢ (DT T3 :
orderg;s: (DT T2 :=
joinforeignkey (DT T1 :=
selecty;s: (DT L :=

AMP2P.LOG,

<L.USERID, L.SONGID, L.DURATION>,

<L.SONGID == "normalized song name"),
DT S := AMP2P.SONG,

<T1.DURATION >= S.LENGTH AND
T1.SONGID == S.SONGID>, <T1.USERID>),
<T2.USERID>, <T2.USERID>),
<T3.USERID>,
<T3.USERID, TIMESPLAYED := count()>),
<T4.USERID>,
<T4.USERID, WEIGHT := sum(T4.TIMESPLAYED)>)

LT VOTE :=
topNiocqr (LT T6 :=
aggrmerge (DT T :=
aggrq;s¢ (DT T4 :=
joingoreignkey (
DT S := AMP2P.SONG, DT T3 :=
orderg;s: (DT T2 :=
joinproadeast (
LT R := RELEVANT R, DT T1 :=
order ;s (
DT L := AMP2P.LOG,
<L.USERID>, <L.USERID,L.SONGID>),
<R.USERID == T1.USERID>,
<T1.SONGID,T1.DURATION, R.WEIGHT>),
<T2.SONGID>,
<T2.SONGID, T2.DURATION, T2.WEIGHT>),
<T3.SONGID == S.SONGID AND
T3.DURATION >= S.LENGTH>,
<T4.SONGID>,
<T4.SONGID, VOTE := sum(T3.WEIGHT)>),
<T5.S0NGID>,
<T5.S0NGID, VOTE := sum(T4.VOTE)>),
<T6.VOTE>, <T6.SONGID, T5.VOTE>, 100)

Fig. 6. Concrete Algebra Example Query

The VOTE query then computes a
relevance prediction for each song,
by counting the times each user has
(fully) listened to it and multiply-
ing this by the just computer user’s
weight. We broadcast-join RELEVANT
with the L0G on all nodes, in or-
der to attach the user’s weight to
each log-record. As RELEVANT is or-
dered on USERID, we need to dis-
tributively sort L0G before merge-
joining it. The resulting DT frag-
ments are again distributively re-
ordered on SONGID to allow quick
foreign-key join into SONG (to ex-
clude songs that were not played
fully). All weights are then summed
in an ordered aggregation that ex-
ploits the ordered-ness on SONGID,
again in a distributed and merged
aggregate. We take the top-100 of
the resulting LT.

While this may seem already a com-
plex query, we call this the “naive”
strategy, as it will have scalability
problems both with the number of
users/nodes and number of songs.
The first query will produce a large
list of all users that have ever lis-
tened to the example song (not just
those who particularly like the song),

which will hog resources from all nodes in the network. The second query even
takes more effort, as it will send basically all log records to the query node for
aggregation! In the next section, we will describe how a slightly modified ver-
sion of this query might be supported much more efficiently in an AmbientDB

enriched with DHTs.

chord hashes
uneven keys. NAIVE
on nade#p
#DHT_HISTO ~
SONGID USER_TIMESPLAYERNODEID| o

_Mmessage s(feam tuple data

2 werel 2z fnode oG
§opEe 5 i) Node#0 R
HISTO 1 Black Lung 16 Horse Power
SONGID NAME ARTIST. SONGID USER TIMESPLAYED| /(§ Z’ulunga m[;ead Can Dance|
1 BlackLung 16 HorsePowerl | 2 Uejtel 2 ve mi amoMana
2 Yulunga = DeadCanDanck| 3 treiftel 4 Boy vz
3 Oye mi amoMana 3 boncz 14 ,{ 5 Faith The Cure]
6 HeyJude The Beatles aggr_merge -~
o SO e,
tables (DHT) SONGID USER ___ TIMESPLAYED OPTIMIZED - only on node subset
2 treffel 2 1— small table broadcasted
{3 treijtel 4 hord |
3 boncz 14 chort |
SONGID NAVE _ ARTIST 4 weiel 3 select A i
7 Boy U2 _{5 boncz 6 I
5 Fain The Cure 6 boncz 10 ! d
6 HeyJude The Beatles H
AmbientDB ;
Node #1 Global Table - =
Abstraction RELEVANT VOTE
on node#1 H 1
Fig. 8. Naive vs. DHT acceler-
Fig. 7. DT and DHT in AmbientDB ated Network Bandwidth Usage

3 DHTs in AmbientDB

Distributed Hash Tables (DHTSs) are useful lookup structures for large-scale P2P
applications that want to query data spread out over many nodes, as a DHT
allows to quickly reduce the amount of nodes involved in answering a query with
high recall. In AmbientDB, an entire DT (or a subset of its columns) may be
replicated in a clustered index. Our goal here is to enable the query optimizer to
automatically accelerate queries using such DHTs. Getting the benefit of such
advanced P2P structures via AmbientDB and its query language is an example
of the simplification of distributed application engineering we are after (program-
mers are currently forced to hardcode such accelerators in their application).
We use Chord [8] to implement such clustered indices as DHTs, where each
AmbientDB node contains the index table partition that corresponds to it (i.e.
the key-values of all tuples in the index partition hash to a finger that Chord
maps on that node). Invisible to users, DHT indices can be exploited by a query
optimizer to accelerate lookup queries. We defined an additional concrete oper-
ator selectenora (DT) :LT that uses the DHT index on a DT to accelerate equi-
selection on the index keys (see also Table 2). It is implemented in the dataflow
level, by routing a message to the Chord finger on which the selection key-value
hashes, and retrieving all corresponding tuples as an LT via a TCP/IP transfer.
As AmbientDB is intended to work even in fully ad-hoc encounters between
nodes, the indices defined on distributed tables might be only partially filled at
any point of time. Also, due to local resource constraints, the DHT may discard
some of its inserts when it would exceed its maximum capacity at that node,
so it may never be fully complete. Using a non-complete index for selecting in
a table reduces the number of tuples found. At this moment, we decided that
the AmbientDB end-user should decide explitly whether an index may be used,
where a default behavior can be based on a méinimum coverage threshold.!.

! An AmbientDB node can use the percentage of its own local tuples having been
inserted up-to-date in the index as an estimate of index coverage in the DT.

RELEVANT :=

select USERID, SUM(TIMESPLAYED) as WEIGHT USERIDWEIGHT)
from AMP2P .HISTO uid5 92
where SONGID = ‘<normalized song name>’’ -2 uid9 72
group by USERID
order by WEIGHT descending uid2 2
limit 10
USERIDWEIGHTLOCATION
RELEVANTNODES := uidb 92 nodel
select R.USERID, R.WEIGHT, H.#NODEID as LOCATION uidb 92 node2
from AMP2P .HISTO H, RELEVANT R -—3 uid9 72 node4
where H.SONGID = ¢‘<normalized song name>’’ and
H.USERID = R.USERID uid2 2 nodel
uid2 2 node2
VOIE :=
select H.SONGID, SUM(H.TIMESPLAYED * RN.WEIGHT) AS VOTE SONGID|VOTE
from AMP2P .HISTO H, RELEVANTNODES RN sid44 4892
where H.USERID = RN.USERID - sid9 3472
groupby H.SONGID
order by VOTE descending sid87 342
limit 100

Fig. 9. Optimized collaborative filtering query in SQL

3.1 Example: Optimized Collaborative Filtering

We now describe how the indexing feature of AmbientDB can be used to optimize
the queries needed by our example amP2P music player to generate playlists.
soate dictributed table We introduce an extra HISTO ta-
AMP2P.HISTO(SONGID varchar, USERID varchar, ble as a pre-computed histogram
TIMESPLAYED integer) .
primary key (SONGID,USERID,#NODEID); of fully-listened-to songs per de-
vice. Working with somewhat
stale log data should not be a
problem for the playlist gener-
delete AMP2P.HISTO; ation problem, as long as user

insert into AMP2P.HISTO :
select L.SONGID, L.USERID, count(*) as TIMESPLAYED the re_comPUtatlon refreSh rate

create distributed index
AMP2P .HISTO(SONGID,USERID, TIMESPLAYED) on (SONGID);

from AMP2P.LOG L, AMP2P.SONG S is faster than the pace of change
where L.SONGID = SG.SONGID and : :

L DURATION >e. SG.LENGTH in human music taste. Th}1s7 us
group by L.SONGID, USERID ing HISTO instead of L0G directly

order by L.USERID, SONGID; reduces the histogram compu-

Fig. 10. Extensions To The Music Schema ~ tation cost of our queries. Ad-

ditionally, in the schema decla-

ration of Figure 10, we created a distributed index on HISTO. As depicted in

Figure 7, this leads to the creation of a DHT. The system-maintained indexed

table is called #DHT HISTO and carries an explicit #NODEID column for each tuple.

As the indexed tuples were inserted by other nodes, this column is explict in a
DHT rather than implict as in a LT, DT or PT.

Using this (indexed) HISTO table, we reformulate our query in Figure 9. First,
we determine those 10 users that have listened most to the example song and
retain their weight using a top-N query. The DHT makes this selection highly
efficient: it involves just one remote node, and taking only the top-N listeners
severly reduces the size of the result. We assume here that the influence extorted
by listeners with a low weight can be discarded, and that a small sample of
representative users is good enough for our playlist. Second, we ask for the

explicit #NODEID locations of the selected relevant HISTO tuples. The reason for
doing so is that we want to convey to AmbientDB that the last query involves a
limited set of nodes such as to reduce the communication and query processing
overhead in all other nodes. Note that this optimization also modifies the original
query, as the user might have LOG entries on other nodes than those where he
listened to the example song (though this is improbable). Third, we compute
the weighted top-N of all songs on only those nodes as our final result.

Figure 11 shows the detailed con-
crete algebra plans for the optimized
query plans. We use selectporq (HISTO)
to directly identify the node with HISTo
tuples of the SONGID of the example
song, and retrieve RELEVANT (this is
contrasted by a full network query and
larger result in the naive strategy; as
illustrated in Figure 8). Locally in
the query node, we then compute the
RELEVANT _USERS and RELEVANT_NODES ta-
bles as the top-10 listeners to that
query resp. all nodes where those top
listeners have listened to that song.
Further queries only concern this node
subset, as we use the join,p;+ to route
tuples only selectively to the HISTO
DT, in order to compute the weighted
scores for all (user,song) combinations
in that subset, which are aggregated
in two phases (distributed and merge)
to arrive at the predicted vote.

Though at this stage we lack ex-
perimental confirmation, it should be
clear that performance is improved in
the optimized strategy that only ac-
cesses 11 nodes w.r.t. the naive strat-
egy that flooded the entire network
twice with the entire contents L0G ta-
ble (as also illustrated in Figure 8).

3.2 Future Work

LT RELEVANT :=
orderj,cq; (LT S :=

select pong (DT H :=
AMP2P.HISTO,
H.SONGID == °‘<normalized song name>’’,
<H.USERID, H.TIMESPLAYED>),

<S.USERID>,

<S.USERID, S.TIMESPLAYED,

LOCATION := H.#NODEID>)

LT RELEVANT_USERS :=
topnjocqal (LT A :=
aggriccal (LT R :=
RELEVANT,
<R.USERID>, <R.USERID,
WEIGHT := sum(R.TIMESPLAYED)>),
<A.WEIGHT>, <A.USERID, A.WEIGHT>, 10)

LT RELEVANT_NODES :=
joinjoeqr (LT R :=
RELEVANT, LT U :=
order;,cqi (LT T :=
RELEVANT_USERS,
<T.USERID>, <T.USERID, WEIGHT>),
<R.USERID == U.USERID>,
<U.USERID, U.WEIGHT, R.LOCATION>)

LT VOTE :=
topniocql (LT V :=
agg8rmerge (DT A
aggrq;s¢ (DT S
orderg;s: (DT
joingp1¢ (LT R :=
RELEVANT NODES, DT H :=
AMP2P.HISTO,
<H.USERID == R.USERID and
H.#NODEID == R.LOCATION>,
<H.SONGID, SCORE :=
H.TIMESPLAYED#R.WEIGHT>),
<J.SONGID>, <J.SONGID, J.SCORE>),
<S.SONGID>,
<S.SONGID, TOT := sum(S.SCORE)>),
<A.SONGID>,
<A.SONGID, VOTE := sum(A.TOT)>),
<V.VOTE>, <V.SONGID, V.VOQTE>, 100)

o

Fig.11. Concrete Algebra Plan

At the time of this writing, AmbientDB is under full construction, with the first
priorities being in the distributed query processor (including basic optimizer)
and the networking protocol. The (Java) prototype being built is designed such
that the codebase can be used both in the real DBMS as well as inside a network
simulator (we are currently using NS2 [21]). In the near future, we hope to obtain
our first performance results on the query strategies described here.

While we now use the joingy;: to selectively route tuples from root to leaves,
we intend to experiment with on-the-fly subset construction of routing trees. In
our optimized example, all nodes of interest become available as a list of node-
ids in RELEVANT_NODES.LOCATION. One can envision an trivial divide & conquer
algorithm that selects some neighbours from this list (e.g. based on pinging a
small random sample and taking the fastest ones), makes them your neighbours
in the new IP overlay, divides the remaining node-list among them, and repeats
the process there. Having a dedicated subnet may reduce the experienced latency
by a factor log(N/M) (where N is tot total amount of nodes and M is the size
of the subset), and even more importantly, reduces network bandwidth usage
by a factor N/M. This creates a routing tree that is somewhat optimized to
the latencies between peers, whereas a purely Chord-based network is randomly
formed in that respect. Continuing on the issue of creating a physical-network
aware P2P logical networking structure, we may experiment with other DHT
algorithms such as Pastry [24] that take network proximity into account.

The dataflow algorithms presented should be considered starting points and
can be optimized in many ways. In [5] we show an optimized join technique that
uses a semijoin-like reduction strategy [1,2], to optimize the projection phase
in a join such that only those attribute values actually in the join result are
fetched exactly once. Since AmbientDB often sends streams of ordered key val-
ues over the network, it might also be worthwhile to investigate (lightweight)
compression protocols to compress these streams in order to reduce the network
bandwidth consumption. A finally possible scalability improvement is to dis-
tinguish between powerful and weak nodes, putting only the powerful backbone
nodes in the Chord ring. The weak slave nodes (e.g. mobile phone) would look
for a suitable backbone and transfer all their data to it, removing themselves as
a bottleneck from the query routing tree.

3.3 Related work

Recently, database research has ventured into the area of in-network query
processing with TinyDB [17]. The major challenge there is to conserve bat-
tery power while computing continuous (approximate) aggregate queries over
an ad-hoc physical P2P radio network between a number of very simple sen-
sors (“motes”). It turns out that executing the queries in the network (i.e. in
the motes) is more efficient than sending individual messages to a base station
from each mote, where many interesting optimization opportunities are opened
by the interaction between the networking protocol and query processing algo-
rithms. AmbientDB directly builds on this work, extending the ideas in TinyDB
from aggregate queries only to full-fledged relational query algebra. A second
strain of recent related research are P2P data sharing protocols that go be-
yond Gnutella in scalability. Chord, Oceanstore and CANJ[22, 8] use distributed
hash-tables (DHT) or other distributed hashing schemes to efficiently map data
items into one node from a potentially very large universe of nodes. Thus, data
stored in such networks is relocated upon entrance to the node where the hashing
function demands it should be. While these algorithms are highly efficient, they

are not directly applicable in AmbientDB, where data placement on a device
is determined explicitly by the user. As described, AmbientDB can use DHTs
for system-maintained index structures, that are not managed explicitly by the
end-user. Another effort of designing complex querying facilities in P2P systems
is presented in [13]. In this paper an algorithm for join over a DHT is presented.
This approach inserts all tuples to be joined on-the-fly in a CAN DHT [22], using
a symmetric pipelined hash-join like [25].

In the database research community, there has been significant interest in
Scalable Distributed Data Structures (SDDSs), such as LH* [16], with a fo-
cus on automatic scaling and load balancing in high query- and update-rate
loads. An important difference with DHTs is that SDDSs make a distinction
between clients and servers and are thus not “pure” P2P structures. Also, DHTs
are designed on a bad network of unreliable connections, whereas SDDSs lack
the resilience features that are necessary to stay connected in such harsh cir-
cumstances. Some recent research has addressed the problem of heterogeneous
schema integration in P2P systems. Bernstein et al. propose a formal framework
called the Local Relational Model as a model for denoting manipulating schemas
and mappings between them in P2P nodes [9]. In the case of the Piazza system,
known techniques for (inverse) schema mappings in the relational domain are
extended to XML data models [12]. In future work on AmbientDB, we hope to
build on this work for creating our XML schema integration component. As for
P2P database architecture work, we should mention PeerDB [20], which shares
similar goals to AmbientDB, but with a focus on handling heteronegenous ad-
hoc schemata. The system uses agent technology to implement extensible query
execution. It matches schemas in an ad-hoc, Information Retrieval like approach,
based on keywords attached to table and column names.

4 Conclusion

The major contribution of our research is a full query processing architecture
for executing queries in a declarative, optimizable language, over an ad-hoc P2P
network of many, possibly small devices. We adopt dataflow execution on ordered
streams and arrive at execution patterns that propagate in parallel multiple
ordered tuple waves through the subset of all participating nodes. We have shown
how Distributed Hash Tables (DHTs) can be incorporated seamlessly in the
architecture to support efficient global indices that can transparently accelerate
queries. In principle, data sharing and querying in the network is on a purely
ad-hoc basis, where data can be replicated on the fine-grained tuple level. As
such, we have advanced the state of the art in P2P systems.

That said, we see ample room for interesting future work. First off, we have
identified here opportunities to further optimize the query processing strategies
described, both in the area of query processing (join, partition, or distributed
top-N), as well as in optimizing the networking protocol. In the next few months
we will conduct first experiments and obtain performance results.

References

1.

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.
22.

23.

24.

25.

P. Apers, A. Hevner, and S. Yao. Optimization algorithms for distributed queries.
IEEE Transactions on Software Engineering, 9(1):57-68, 1983.

P. Bernstein and D. Chiu. Using semi-joins to solve relational queries. Journal of
the ACM (JACM), 28(1):25-40, 1981.

C. Bobineau, L. Bouganim, P. Pucheral, and P. Valduriez. Picodbms: Scaling down
database techniques for the smartcard. In Proc. VLDB Conf., 2000.

. P. Boncz. Monet: A Next-Generation DBMS Kernel For Query-Intensive Applica-

tions. PhD thesis, Universiteit van Amsterdam, May 2002.

P. Boncz and C. Treijtel. Ambientdb: Relational query processing in a p2p network.
Technical Report INS-R0305, CWI, June 2003.

J. Breese, D. Heckerman, and C. Kadie. Empirical Analysis of Predictive Algo-
rithms for Collaborative Filtering. In Proc. Conf. on Uncertainty in Artificial
Intelligence, July 1998.

A. Doan et al. Reconciling schemas of disparate data sources: a machine-learning
approach. In Proc. SIGMOD Conf., pages 509-520, 2001.

I. Stoica et al. Chord: A scalable Peer-To-Peer lookup service for internet applica-
tions. In Proc. SIGCOMM Conf., pages 149-160, 2001.

P. Bernstein et al. Data management for peer-to-peer computing: A vision. In
Proc. WebDB Workshop, 2002.

G. Graefe. Encapsulation of parallelism in the volcano query processing system.
In Proc. SIGMOD Conf., pages 102-111, 1990.

G. Graefe. Volcano — an extensible and parallel query evaluation system. IEEE
TKDE, 6(1):120-135, 1994.

S. Gribble, A. Halevy, Z. Ives, M. Rodig, and D. Suciu. What can peer-to-peer do
for databases, and vice versa? In Proc. WebDB Workshop, 2001.

M. Harren, J. Hellerstein, R. Huebsch, B. Loo, S. Shenker, and I. Stoica. Complex
queries in dht-based peer-to-peer networks. In Proc. IPTPS Workshop, 2002.

S. Hedberg. Beyond desktop computing: Mit’s oxygen project. Distributed Systems
Online, 1, 2000.

D. Kossmann. The state of the art in distributed query processing. ACM Com-
puting Surveys (CSUR), 32(4):422-469, 2000.

W. Litwin, M.-A. Neimat, and D. Schneider. LH* — Linear Hashing for Distributed
Files. In Proc. SIGMOD Conf., 1993.

S. Madden, M. Franklin, J. Hellerstein, and W. Hong. Tag: a tiny aggregation
service for ad-hoc sensor networks. In Proc. OSDI’02 Symposium, 2002.

S. Melnik, E. Rahm, and P. Bernstein. Rondo: A programming platform for generic
model management. In Proc. SIGMOD Conf., 2003.

Napster, http://opennap.sourceforge.net/, 2003.

W. Ng, B. Ooi, K.-L. Tan, and A. Zhou. PeerDB: A P2P-based System for Dis-
tributed Data Sharing. In Proc. ICDE Conf., 2003.

The network simulator — ns-2, http://www.isi.edu/nsnam/ns/, April 2003.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A scalable
content-addressable network. In Proc. SIGCOMM Conf., pages 161-172, 2001.
Matei Ripeanu, Adriana Iamnitchi, and Tan Foster. Mapping the gnutella network.
IEEE Internet Computing, 6(1):50-57, 2002.

A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and
routing for large-scale p2p systems. In Proc. IFIP/ACM Middleware 2001, 2001.
A. Wilschut and P. Apers. Dataflow query execution in a parallel main-memory
environment. Distributed and Parallel Databases, 1(1):103-128, 1993.

